MATH 564
Advanced Real Analysis
Abstract Pocket Tools
Let
$$(X, \mathcal{B}, \mu)$$
 be a measure space.
Monotore convergence for sets
a) If $(A_n)_{n \in \mathbb{N}}$ is an increasivy sequence of sets
in \mathcal{B} , i.e
 $A_0 \leq A_1 \leq A_2 \leq \dots$
then $\mu(\bigcup A_n) = \lim_{n \to \infty} \mu(A_n)$.
 $\mu(\bigcap A_n) = \lim_{n \to \infty} \mu(A_n)$
 $\mu(A_n) = \lim_{n \to \infty} \mu(A_n)$
 $\mu(A_n) = 0$ then
 $\mu(A_n) = \infty$ the $(A_n) = A_n = \beta$.
Then $\mu(A_n) = \infty$ VinceN but $\bigcap A_n = \beta$.
 $n \geq 1$

Proof
a) Disjointify: set
$$A_0' = A_0$$
, $A_{n'} = A_n \setminus A_{n-1}$.
Then $\mu(\bigcup A_k) = \mu(\coprod A_k') = \sum_{k=1}^{\infty} \mu(A_k')$
 $= \lim_{k \ge 0} \sum_{k=1}^{n} \mu(A_k')$
 $= \lim_{n \to \infty} \sum_{k=1}^{n} \mu(A_k')$
 $= \lim_{n \to \infty} \mu(A_n)$
b) Set $B_n = A_0 \setminus A_n$, so $\bigcup_{n \ge 0} B_n = A_0 \setminus A_{\infty}$.
A₀ where $A_{\infty} = \bigcap_{n \ge 0} A_n$.
Then $\{B_n\}_{n\ge 0}$ is an inversion sequely
 $\mu(\bigcup B_n) = \mu(A_0 \setminus A_{\infty})$
 $= \mu(A_0) - \mu(A_{\infty})$
 $= \mu(A_0) - \lim_{n \ge \infty} \mu(A_n)$
Hence, concelling $\mu(A_0)$ on both sides,
 $\mu(A_{\infty}) = \lim_{n \ge \infty} \mu(A_n)$.

Borel - Cantelli Lemmas

Let P be a property of some points in X. TFAE terminology: · {xeX: x satisfies P} is conull (w.r.t. µ) almost every (a.e) point x satisfies P
P holds almost everywhere (a.e)
P holds almost surely (a.s.) We can also say that p-positively many x eX satisfy P if m {x : x satisfies P3 > 0. Lemma (Borel-Cantelli) Let {An3 be a sequence of measurable sets a) If Z M(An) < 00 then a.e. X EX lives in nzo at most finitely many An, ie the set i x e X: In reAnd = axeX: x lives is infinitely many Ang is null. Lemma (Partial converse / measure compactness) b) Suppose $\mu(X) < \infty$ [F there is a fixed $\varepsilon > 0$ such that $\mu(A_n) = \varepsilon$ for all n, then at least an 2-measure set of x lives in

infinitely many
$$A_n's$$
, ic
 $M \{ x \in X : \exists_n^{\infty} x \in A_n \} \ge \varepsilon$
Proof
a) Put $B = \bigcap_{n \ge 0} \bigcup_{k \ge n} A_n = \limsup_{n \ge 0} A_n$.
Clearly B is measurable. Write $B_n = \bigcup_{k \ge n} A_n$. The
 $\varepsilon B_n S_{n \ge 0}$ are decreasing, with
 $B = \bigcap_{n \ge 0} B_n$
Then obviously $B_n \supseteq B$, $B \in B_n$ for all neIN.
Hence, $M(B) = M(B_n)$, and $\lim_{n \ge \infty} M(B_n) = 0$.
This follows since
 $M(B_n) = M(\bigcup_{k \ge n} A_n) = \sum_{k \ge n} M(A_n)$
which as a tail of a converging series goes to
 O as $n \ge 0$. Thus, we have shown a).
We have $M(B_n) \longrightarrow M(B)$ as $n \ge \infty$, where
 $B_n = \bigcup_{k \ge n} A_n$ again.

Also, for all n, $\mu(B_n) = \mu(\bigcup_{k \ge n} A_n) \ge \mu(A_n)$ 22. Hence, $\mu(B) \ge \varepsilon$. Application: Call a sequence SAn 3nzo of measurable sets vanishing Cresp almost vanishing) if AoZA12... and An is empty Cresp null. Let (X, F, m) a finite measure space. Fact: If C is a collection of measurable sets closed under countrable unions & containing sets of arbitrarily small measure, then there is Y an almost-vanishing sequence in C. Proof For each nEN, choose An with $\mu(A_n) < 2^{-\eta}$. Set $B_n = \bigcup_{k \ge n} A_n$ Then Br E C, the Br Jnzo are decreasing, and $\mu(\bigcap B_n) = 0$ by Bovel-(antelli), since $\sum_{n\geq 0} \mu(A_n) \leq \sum_{n\geq 0}^{l} 2^{-n} < \infty$.

Measure Exhaustion

Definition Call a family C of measurable sets almost disjoint if VA≠B in C, ANB is null.

Lemma Let μ be a σ -finite measure. Then there is no uncountable, almost disjoint collection of measurable non-null sets.

First assume μ is a finite measure. Let C be an almost disjoint collection of almost disjoint measurable non-null sets. For each nell, let $C_n = \{ C \in C : \mu(C) \ge \frac{1}{n} \}$. Since every set in $C_r = \bigcup_{n \ge 1} U_n$

Clearly each C_n is finite since $\mu(X) < \infty$, hence C is countable as a countable union of finite sets. § ۵

HW: prove for J-finite measure.

Measure exhaustion lemma Let u be a o-finite measure. Let $(A_{\alpha})_{\alpha < \omega_{1}}$ be an increasing sequence of measurable sets. Then there is a countrible α_{∞} is $\alpha_{\infty} < \omega_{1}$, such that $A_{\alpha_{\infty}} = \mu A_{\alpha}$ for all $\alpha > \alpha_{\infty}$, $(e \mu (A_{\alpha} A_{\alpha}) = 0)$ Here, $=\mu$ is equality up to a null set, ie $A = \mu B$ if $A \triangle B$ is null. Proof Apply the previous lemma to the family $\left(A_{\alpha} \setminus \bigcup_{B < \alpha} A_{B}\right)_{\alpha < \omega_{1}}$ This family is disjoint, hence almost disjoint. Then only countably many of this family have poslitive measure, ie 2 « < wi : A A A A is non-null? is countrible, so there exists a supremum $\alpha_{10} < \omega_{1}$ of that set.

Vefinition Fix a neasure space (X, B, µ). A measurable set A is called an atom if there is no subset BEA with $0 < \mu(B) < \mu(A)$.

M is called atomless if it has no atoms.

Sierpinski's theorem

In an atomless measure space, μ attains every value in EO, $\mu(X)7$, including if $\mu(X) = \infty$. Ie, for all $r \in EO$, $\mu(X)7$, there is $A \in 23$ with

μ(A) =r

Proof (sketch) Claim 1: Every measurable X' admits subsets of arbitrarily small measure. Let $r \in (0, \mu(X))$. Define $r' := \sup \Sigma \mu(B) : \mu(B) \le r \mathbb{Z}$.

Claim 2: the supremum is achieved on a set A. Idea: Baby Zora's lemma. Then r = r', since otherwise if B $\leq X$ has $\mu(B) = r'$. then take a set $\Xi \leq X \setminus B$ with $\mu(\Xi) \leq r - r'$. so $r \leq \mu(BUE) \leq r'$, contradicting defined to r'. Ξ